Singular, weak and absent: solutions of the Euler equations
نویسنده
چکیده
where φ is the angle between the unit vortex line tangent vectors ξ(x−y, t) and ξ(x, t). Some degree of smoothness of the bundle of vortex lines near a potential singularity may result in averting blowup [3]. For simplicity, we’ll discuss Lipschitz continuous cases, although Hölder continuous cases may be analyzed in a similar fashion. We distinguish between the sine-Lipschitz case (i.e. sinφ is locally Lipschitz), when the vortex lines are at worst locally osculating anti-parallel
منابع مشابه
Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملThe Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملOn Admissibility Criteria for Weak Solutions of the Euler Equations
Abstract. We consider solutions to the Cauchy problem for the incompressible Euler equations satisfying several additional requirements, like the global and local energy inequalities. Using some techniques introduced in an earlier paper we show that, for some bounded compactly supported initial data, none of these admissibility criteria singles out a unique weak solution. As a byproduct we show...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کامل